
API Security Assessment Report
Target Environment: https://dev. .app/
 Assessment Date: August 2025
Assessment Type: Blackbox and Logical Review
Reviewer:

ImmuniWeb Result Grade - F,

Executive Summary
This report outlines critical vulnerabilities identified in the current implementation of s
API endpoints. The encryption mechanisms, authentication flaws, and insecure endpoint design
expose the system to risks such as unauthorized data access, user impersonation, session
hijacking, and mass service disruption. These vulnerabilities could be exploited by attackers to
compromise confidentiality, integrity, and availability of the system.

Key Findings

1. Deterministic Encryption in Use
Observation: The encryption service at https://dev. .app/decrypt/encrypt
produces the same ciphertext for the same input.
 Example:

 Input: {"id": "474"}
Output: i855963Mb/T2FMOq788mJOLr7rGxNMfpTgDXdOX+quuXTWqXNMDLcqZ7OoT4k86k

● Risk: This strongly indicates the use of deterministic encryption or encoding, likely
AES in ECB mode or a non-randomized scheme.

● Implication: Patterns in input are preserved in ciphertext, making the system vulnerable
to:

○ Frequency analysis

○ Plaintext-ciphertext mapping

○ Replay or forgery attacks

BOLUJO EXCELLENT
BOLUJO EXCELLENT

● Severity: HIGH

2. Encryption Endpoint Lacks Authentication

● Endpoints:

○ POST https://dev. .app/decrypt/encrypt

○ POST https://dev. .app/decrypt

● Observation: These endpoints appear to be publicly accessible without requiring any
form of authentication or access control.

● Risk: An attacker with knowledge of input patterns (e.g., user IDs) can abuse this to:

○ Encrypt arbitrary inputs and spoof tokens or payloads

○ Decrypt sensitive data if responses are not strictly limited

● Severity: CRITICAL

3. Insecure Logout Endpoint (Unauthenticated)

● Endpoint:
https://dev. .app/passengerapi114/index/?type=passenger_log
out

● Payload Example: { "id": "474" }

● Observation: This endpoint:

○ Accepts user ID directly in the body

○ Requires no token or session validation

○ Allows logout of any user with just the ID

● Risk:

○ Authorization Bypass: No user ownership validation

○ ID Enumeration Attack: Numeric IDs (e.g., 1–10000) can be brute-forced

○ Denial of Service (DoS): Scripted attacks can force-logout users en masse

● Real-World Scenario: Malicious script logs out 1000+ users via ID enumeration

● Severity: CRITICAL

4. Lack of Access Control Across API

● Observation:

○ API requests do not enforce identity or session binding

○ Backend trusts client-supplied IDs or payloads

● Implication:

○ One user can impersonate another

○ No protection against privilege escalation or impersonation

● Severity: HIGH

5. Unsecured API Design Patterns

● Observation: Current API routes use:

○ Query parameters for logic control (?type=passenger_logout)

○ Redundant and insecure method (GET/POST mix for unsafe operations)

● Risk: This violates RESTful best practices and makes code behavior harder to audit or
secure

● Severity: MEDIUM

6. Trip tracking - Screen for when trip not found

Mitigation Recommendations

1. Use Strong, Randomized Encryption

● Replace deterministic encryption with AES-GCM or AES-CBC with random IVs

● Never use ECB mode

● Ensure encryption is only used for internal system purposes, not as authentication or
authorization

2. Protect All Sensitive Endpoints with Authentication

● Require OAuth2 / JWT for all encryption/decryption, logout, and sensitive operations

● Validate token for every request:

○ Token signature

○ Expiry

○ Scope/permissions

3. Apply Proper Authorization Checks

● Do not accept user IDs or sensitive info in body or query without verification

● Validate that the token owner is the user performing the action:

○ Match token subject to user ID in request

○ Reject mismatches or unverified sessions

4. Refactor API Endpoints

● Use RESTful path: POST /v1/passenger/logout

● Remove need for passing user ID — derive from the token

● Implement session invalidation securely

5. Implement Rate Limiting and Abuse Prevention

● Rate-limit API usage per IP or user token

● Monitor for brute-force patterns

● Add CAPTCHA or bot protection to sensitive or abuse-prone endpoints

6. Enable Logging and Audit Trails

● Log every sensitive operation with user, IP, timestamp, and action

● Enable traceability for security investigations and accountability

7. Secure All API Traffic

● Enforce HTTPS with TLS 1.2+

● Validate that encryption endpoints are internal or require API keys at minimum

Potential Impact of No Action
Risk Possible Impact

Unauthorized Access Attackers perform actions on behalf of others

Denial of Service Users are mass logged out or service degraded

Data Exposure Confidential payloads guessed or decrypted

Lack of Accountability No tracking of malicious usage or breach analysis

Compliance Failures Violations of GDPR, PCI-DSS, or internal standards

Summary of Key Remediations
Area Action

Encryption Switch to AES-GCM or CBC with random IVs

Authentication Require tokens for all sensitive endpoints

Authorization Validate user identity for all actions

Endpoint Design Refactor to use RESTful routes, avoid exposing user
IDs

Security Controls Add rate limits, audit logging, bot protection

Final Notes
The current architecture lacks the foundational controls necessary to ensure secure handling of
user data and operations. Immediate attention is required to prevent exploitation. The outlined
mitigation steps provide a clear roadmap toward securing the system and protecting both the
platform and its users.

	API Security Assessment Report
	Executive Summary
	1. Deterministic Encryption in Use
	2. Encryption Endpoint Lacks Authentication
	3. Insecure Logout Endpoint (Unauthenticated)
	4. Lack of Access Control Across API
	5. Unsecured API Design Patterns

	Mitigation Recommendations
	1. Use Strong, Randomized Encryption
	2. Protect All Sensitive Endpoints with Authentication
	3. Apply Proper Authorization Checks
	4. Refactor API Endpoints
	5. Implement Rate Limiting and Abuse Prevention
	6. Enable Logging and Audit Trails
	7. Secure All API Traffic

	Potential Impact of No Action

